
ZedBoard Lab 6
LED and driver

Chun-Chen Tu

timtu@umich.edu

Features of design

• Data transmission using HP (High performance)
channel.

• CDMA (Central Direct Memory Access) in charge of
moving data.

– Driver

– Interrupt handling

• BRAM (Block RAM) control

System Architecture

ARM DDR

GP0

AXI
Interconnect1

PS
(Processing System)

PL
(Programmable Logic)

AXI4-Lite
M_AXI

S_AXI

HP0
mem

0x00000000 0x1F0000000x1C000000

HP0

AXI
Interconnect0

CDMA

BRAM
Controller0

BRAM
Controller1

BRAM

0x500000000x60000000

PortAPortB

0x40000000

AXI4

Enable the AXI GP 0 channel.

Check on the M_AXI_GP0 box.

Click on HP0 and enable it.

Click on Enable S_AXI_HP0 interface.

And set the address to be 0x1C000000 to 0x1FFFFFF

(This is DDR address from 448MB to 512MB)

Add an AXI Central DMA design.

And two AXI BRAM Controller.

(Note: this will create two BRAM
automatically, delete one).

Sometimes you need to add BRAM
yourself.

CDMA setting:

Set the Data Width to 1024

and Burst Length to 256

Assign 0x40000000 – 0x4000ffff to CDMA

BRAM controller 0 setting:

Set the address from 0x50000000 to 0x5000FFFF (64KB for the BRAM)

Change to Data Width to 64

Click the Slave Single Port BRAM

BRAM controller 1 setting:

Set the address from 0x60000000 to 0x6000FFFF

(Note: The address is different from the previous)

Change to Data Width to 64

Click the Slave Single Port BRAM

Create two AXI interconnect

Connect the design like this.

Connect clock and reset signals.

Click on Clock Generation.

Modify FCLK_CLK2 to be 85MHz

This is the clock we connect to BRAM controller and CDMA.

We need to modify the clock or there will be time violation.

Now we have to set the interrupt.

Move axi_cdma_0 to the other side.

Next

• Export to SDK

– Create BOOT.BIN

– Create devicetree.dtb and make the modification. Also to
prevent the kernel from using HP0 memory we should
modify bootargs.

• Driver

– Interrupts

– Mutex (Mutual exclusion)

– Linux kernel wait queue

– Kernel/User memory, copy_from_user, copy_to_user

• Java user application.

Interrupts

• Polling v.s Interrupts

– Polling: CPUs keep checking if something need to be
handled.

– Interrupt: Devices inform CPU.

• CDMA interrupt

– OS recognized by

IRQ number

– But in OS, this should

be IRQ_number + 32

cdma_probe()

irq handler

Mutex

• Why do we need mutex?

– Under environment of multithread.

– Prevent more than one thread to access resource.

– mutex v.s semaphore

• Easy concepts

– Lock mutex -> execute critical section -> unlock mutex

cdma_write()

Linux Kernel wait queue

• We need to stop the process and wait for CDMA (or
other devices) to complete their works.

• A while loop is not a good idea.

– Occupying CPU resource

• Linux Kernel wait queue is designed to solve this
situation.

– Process go to sleep and release CPU resources to other
processes.

cdma_write()

go to sleep

wake up and continue

copy_from_user, copy_to_user

• Why do we need this?

– User space memory is fragmented to pages.

– For security reason.

http://www.ibm.com/developerworks/library/l-kernel-memory-access/

