
ZedBoard Lab 5
LED and driver

Chun-Chen Tu

timtu@umich.edu

File placement

Zedboard

bootbin

devicetree

Zedboard_Linux_Design

xilinx
xps

sdk

the file shared between windows and
virtualbox

Generated BOOT.BIN file.

windows

win

linux-digilent

Linux under virtualbox

home/user

devicetree file.

xps projects

sdk projects

prebuilt SD image

arm kernel files and
scripts to build device tree.

NFS

Shared folder
mount dir

NFS mount dir

ramdisk ramdisk mount dir

driver driver file.

Outline

• We’ll add and GPIO (general purpose I/O) to control
LED.

• Also, to control LED under OS, we need driver.

User Space

Kernel Space

Hardware

set_led.out

gpio.ko

fp=fopen(“/dev/gpio”);
fprintf(fp,0b11110000);

iowrite8(0xf0,gpio_memory)

AXI4-Lite

System Architecture

ARM DDR

GP0

AXI
Interconnect

GPIO

PS
(Processing System)

PL
(Programmable Logic)

AXI4-Lite
M_AXI

S_AXI

external port

XPS design

You can create a new project or modify the previous empty design we just
created.

Enable the AXI GP 0 channel.

Click on the grey arrow.

Check on the M_AXI_GP0 box.

You will see GP0 turns from grey to green. This indicate AXI GP0 is enable.

Click on the IP Catalog.

Add AXI General Purpose IO by double click it

Click Yes when asked.

A configuration box will show up.

Modify Channel Width to 8. (Since we only have 8 LEDs)

Use the default settings.

Click on Bus Interfaces. You’ll find the connection is automatically established.

Click on Project tab

And double click the UCF File

system.ucf
NET axi_gpio_0_GPIO_IO_pin<0> LOC = T22 | IOSTANDARD=LVCMOS33; # "LD0“

NET axi_gpio_0_GPIO_IO_pin<1> LOC = T21 | IOSTANDARD=LVCMOS33; # "LD1“

NET axi_gpio_0_GPIO_IO_pin<2> LOC = U22 | IOSTANDARD=LVCMOS33; # "LD2“

NET axi_gpio_0_GPIO_IO_pin<3> LOC = U21 | IOSTANDARD=LVCMOS33; # "LD3“

NET axi_gpio_0_GPIO_IO_pin<4> LOC = V22 | IOSTANDARD=LVCMOS33; # "LD4“

NET axi_gpio_0_GPIO_IO_pin<5> LOC = W22 | IOSTANDARD=LVCMOS33; # "LD5“

NET axi_gpio_0_GPIO_IO_pin<6> LOC = U19 | IOSTANDARD=LVCMOS33; # "LD6“

NET axi_gpio_0_GPIO_IO_pin<7> LOC = U14 | IOSTANDARD=LVCMOS33; # "LD7"

Next...

• Export to SDK and generate BOOT.BIN,
devicetree.dtb

– Follow steps in the previous slides.

• Driver

– Under OS, we need driver to connect user
application and hardware.

• User application

– An user end program

Hello World Driver

• Before we work on the driver for LED, let’s take a
look at a simple driver. This will help you understand:

– How to compile a driver

– How to insert (insmod) and remove(rmmod) a driver

– How to print information in kernel.

• You need to compile kernel first since it need some
information from the kernel. Also, the driver you use
need to be compatible with your kernel. Or you’ll get

mkdir ~/win/driver/helloworld

cd ~/win/driver/helloworld

• We will use Makefile to compile driver

vi Makefile

Note: the red region should be one tab, or an error will occur
when compiling.

KERN_SRC=/home/hadoop/linux-digilent
obj-m+=helloworld.o

all:
make –C $(KERN_SRC) ARCH=arm M=`pwd` modules

clean:
make –C $(KERN_SRC) ARCH=arm M=`pwd` clean

helloworld.c
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/version.h>

static int __init hello_init(void){
printk(KERN_INFO "Hello World\n");
return 0;

}

static void __exit hello_exit(void){
printk(KERN_INFO "Good Bye\n");

}

module_init(hello_init);
module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(“Hellow world driver");
MODULE_AUTHOR("Chunchen Tu.");
MODULE_VERSION("1.00a");

Include files from kernel. Recall that we have
define KERN_SRC in Makefile. The header file
should exist under $(KERN_SRC)/include

Operations related to insmod.

Operations related to rmmod.

Define the functions will be called
when insmod and rmmod.

Driver information.

insmod, lsmod and rmmod

• Put the helloworld.ko into SD card. (Or use NFS)

insmod helloworld.ko

• List the current driver

lsmod

• Remove driver

rmmod helloworld (Note: There is no “.ko” in the command)

But driver for LED is not that easy…

LED driver – From User to Hardware

User

devicetree

Hardware

set_led

devicetree.dtb

fp=fopen(“/dev/gpio”);

OS /dev/gpio

device major number

gpio.kodriver

of_device_id.compatiable

physical address

File operations

This is related to operations like (in C) fopen, fprintf, fscanf
For example (in C):

fp=fopen(/dev/gpio);
fprintf(fp,0xf0);

will link to gpio_write function in the kernel.

Driver statistics operations

Driver statistics. This will show up when you type: cat /proc/driver/gpio

Initialization and compatible
Driver initialization.
Note that the compatible should be
consistent with the one in the
device tree.

Flows of operations

insmod

gpio_init()

gpio_probe(){
• driver initialization
• memory mapping
}

rmmod

gpio_exit()

gpio_remove(){
• free resource
• detach memory

mapping
}

Flows of operations

fprintf(fp,0xf0)

gpio_release()

gpio_write(){
copy_from_user(ker_buf,usr_data)
iowrite8(ker_buf,virtual_addr)

}

gpio_open ()

fread(fp,buf)

gpio_release()

gpio_read(){
ker_buf=ioread8(virtual_addr)
copy_to_user(usr_buf,ker_buf)

}

gpio_open ()

Address mapping

• We know that gpio is related to address 0x41200000. But we
cannot access it directly.
– For security reason.

• Map the physical address to virtual address.

In this case, we map
0x412000000 -> 0xe0880000
Once we want to operate gpio
under kernel, we need to access
it through virtual address.

gpio_write()

As the gpio_write is invoked (ex by fwrite), the OS will pass data and data size to gpio_write.
buf: buffer of data in from user.
count: data size

gpio_write()

Also please check the usage of gpio IP. We
should configure the tri-state register to 0 to
make gpio operating in output mode.

mknod

• Next, we should create a device node

mknod /dev/gpio c 50 0

c: character device.

50: major number

0: minor number

major
number

minor
number

User application

It’s an easy example. Since there are only 8 leds, we only write a char into our
device. For a larger memory example, please refer to the next slide.

vi set_led.c

Cross compile and test
Use the cross compiler (the one we use to compile kernel)

arm-xilinx-linux-gnueabi-gcc set_led.c –o set_led.out

you’ll get an binary file set_led
insert the driver file gpio.ko and execute set_led

gpio_read()

• It’s easy just like gpio_write():

– set the tri-state register.

– ioread

– print out

• Try it yourself

