
ZedBoard Lab 4
Hardware Design

Chun-Chen Tu

timtu@umich.edu

XPS: Hardware design
Generate bitstream
Export to SDK

SDK: Create FSBL

SDK: Generate
devicetree.dts

SDK: Create Boot Image

devicetree compiler(DTC)
devicetree.dtb

fsbl.elf

system.bit

fetch u-boot source
u-boot.elf BOOT.BIN

(Hardware)

fetch source of linux utilities:
busybox, SSH … etc

Cross Compiler
ramdisk8M.image.gz
(root file system)

fetch kernel source Cross Compiler
zImage
(OS)

(peripheral devices
description)

File placement

Zedboard

bootbin

devicetree

Zedboard_Linux_Design

xilinx
xps

sdk

the file shared between windows and
virtualbox

Generated BOOT.BIN file.

windows

win

linux-digilent

Linux under virtualbox

home/user

devicetree file.

xps projects

sdk projects

prebuilt SD image

arm kernel files and
scripts to build device tree.

NFS

Shared folder
mount dir

NFS mount dir

ramdisk ramdisk mount dir

driver driver file.

Outline

• Why don’t we use files in prebuilt SD image?

– The prebuilt SD image contain some other designs.

– We need to build our own hardware design.

• In this slide, we will focus on building an empty
hardware design.

Requirement

• Xilinx EDK tools: 14.4 version or later
(Note: 14.2 cannot generate devicetree files and
occurs some problems when creating new project)
– Xilinx Platform Studio (xps)
– Xilinx Software Development Kit (sdk)

• Linux environment: Please refer to Lab 0. You’ll need
the followings:
– Device tree compiler(DTC): This will appear once you’ve

compiled kernel image.
– Cross compiler

• My platform:
– Win 7 with i7 cpu 32G ram.
– Ubuntu 12.04 64-bit server version on virtualbox, single

core and 8G ram

Workflow - generate BOOT.BIN

• In XPS

– Create your design in XPS

– Export to SDK: get system.bit

• In SDK

– Generate (or recompile) FSBL project: get fsbl.elf

– Create BOOT.BIN from system.bit, fsbl.elf we just
generated and u-boot.elf (under boot_image) from
prebuilt files.

XPS: Hardware design
Generate bitstream
Export to SDK

SDK: Create FSBL

SDK: Create Boot Image

fsbl.elf

system.bit

fetch u-boot source
u-boot.elf

BOOT.BIN

XPS create a new project

Under Xilinx Design Tools->ISE Design Suite 14.4->EDK->Xilinx Platform Studio

Note: Another way is to open XPS through PlanAhead.

Board Vendor: Avnet

Board Name: Zedboard Zynq

Next

Press Select All

And then Remove

Finish

A control panel will show up. You can make some modification. But how to
add something is not the topic now. Click Export Design to generate an empty
bit stream and export it to SDK as well.

Check Include bitstream and BMM file

and then Export & Launch SDK for convenience

XPS will start to generate bit stream. For an empty design, this should be
several minutes. SDK will automatically activate after bit stream generate. And
the hardware information will also export to SDK.

The system.bit will occur under Zedboard\xilinx\xps\clean\SDK\SDK_Export\hw

For the first time you launch SDK, you will need to specify workspace.

As for me: Zedboard\xilinx\sdk

Now we want to generate fsbl.elf

In SDK

File->New->Application Project

Give the new project a name, like fsbl

Choose standalone for OS Platform and C for Language

Remain other settings as default and then Next

Choose Zynq FSBL as templates

and then Finish

After finish, SDK will compile fsbl automatically.

The fsbl.elf will appear under Zedboard\xilinx\sdk\fsbl\Debug

Finally, we can create our clean BOOT.BIN

Click Xilinx Tools -> Create Zynq Boot Image

Choose Create a new bif file and then select FSBL, system.bit, and u-boot.elf
FSBL: Zedboard\xilinx\sdk\fsbl\Debug\fsbl.elf
bitstream: Zedboard\xilinx\xps\clean\SDK\SDK_Export\hw\system.bit
u-boot:Zedboard\ZedBoard_Linux_Design\boot_image\u-boot.elf
Create Image
Finally, as I selected, u-boot.bin will appear under Zedboard\bootbin. Rename it as BOOT.BIN and
we’re done.
Note : The order is important!! Please follow the sequence.

Note that we use the file in
prebuilt SD image.

A quick test

If you just can’t wait, you can try to replace the BOOT.BIN of the prebuilt
image.

But you’ll see this:

And then zedboard hangs.

This is because we’re not using the right devicetree.dtb

Note: As you modify the hardware, be sure to update your device tree blob!!

Workflow – generate device tree blob

• Export the hardware design to SDK:

– In XPS, Export Design just like we have done.

• Add Device Tree Generator
– You only have to do this as the first time you generate device tree blob.

• Create device tree project

– SDK will then generate dts file. But it need some
modification before compiling.

• Compile dts to dtb
– As far as I know, this can only done under Linux. And your should

compile kernel to get the compiler.

XPS: Hardware design
Generate bitstream
Export to SDK

SDK: Generate
devicetree.dts

devicetree compiler(DTC)
devicetree.dtb

First we download the device tree repositories.
Under Windows: https://github.com/Xilinx/device-tree
and you can download the Device Tree Generator

Or under Linux
simply use the git command
git clone git://github.com/Xilinx/device-tree.git

https://github.com/Xilinx/device-tree

In order for SDK to correctly find the repositories, the hierarchy should look like this.

In SDK, Xilinx Tools -> Repositories

Press New and then add Zedboard\devicetree
OK

File -> New -> Board Support Package

Choose device-tree and then Finish

Set bootargs as:
console=ttyPS0,115200 root=/dev/ram rw initrd=0x800000,8M earlyprintk rootwait
devtmpfs.mount=1
And choose console device as ps7_uart_1
OK
After building, you can find xilinx.dts under
Zedboard\xilinx\sdk\device-tree_bsp_0\ps7_cortexa9_0\libsrc\device-tree_v0_00_x
Copy xilinx.dts to Zedboard\devicetree and rename it as devicetree.dts

Modify dts to fit zedboard

• It seems there are some inappropriate settings
for the dts generating.

• Open dts files and change the followings

Line 21:
compatible = "xlnx,zynq-7000";
model = "Xilinx Zynq";

Line 21:
compatible = "xlnx,zynq-zed";
model = "Xilinx Zynq ZED";

ps7_qspi_0: ps7-qspi@e000d000 {
clock-names = "ref_clk", "aper_clk";

ps7_qspi_0: ps7-qspi@e000d000 {
bus-num=<0>;
clock-names = "ref_clk", "aper_clk";

Add a new line for bus-num setting

Search for qspi

Compile dts to dtb

• The compiling script is ~/win/linux-digilent/scripts/dtc/dtc

• Compile dts to dtb by
cd ~/win/devicetree

~/linux-digilent/scripts/dtc/dtc -I dts -O dtb -o devicetree.dtb devicetree.dts

Reference: website

http://www.wiki.xilinx.com/Build+Device+Tree+Blob

Test again

Replace devicetree.dtb with the prebuilt image.

And boot the zedboard again.

Congratulation!!!!

